

Federal Institute for Drugs and Medical Devices

Covariate adjustment: Traditional principles and challenges by new approaches

Andreas Brandt

Disclaimer

The views expressed in this presentation are the presenter's personal views and not necessarily the views of BfArM or EMA

Outline

- EMA GL on adjustment for baseline covariates
- New approaches to develop synthetic (prognostic) covariates for adjustment with special focus on PROCOVA
- Challenges by new approaches

26 February 2015 EMA/CHMP/295050/2013 Committee for Medicinal Products for Human Use (CHMP)

Guideline on adjustment for baseline covariates in clinical trials

General GL requirements for primary analysis

- Covariates included in the primary analysis must be pre-specified
- No post-baseline covariates
- No treatment by covariate interactions

GL Recommendations

- Justification for including each of the covariates should be provided
- Main reason to include a covariate is evidence of strong or moderate association between the covariate and primary outcome measure
 - Adjustment for such covariates generally improves the efficiency of the analysis
- Stratification variables should usually be included as covariates or stratification variables in the primary analysis regardless of their prognostic value
- No more than a few covariates should be included in the primary analysis
 - It is safer to pre-specify a simple model
 - More likely to be numerically stable
 - Assumptions underpinning the statistical model are easier to validate
 - Generalisability of the results may be improved

GL recommendations (ctd)

- Without prior knowledge, a simple functional form should be assumed for the relationship between a continuous covariate and the outcome variable
- Validity of model assumptions must be checked when assessing the results
 - Particularly important for generalised linear or non-linear models where mis-specification could lead to incorrect estimates of the treatment effect

GL ,messages'

- Simply producing smaller P-values not sufficient to produce convincing evidence of a clinically useful effect
- Important considerations beyond p-value:
 - Size of the treatment effect
 - Consistency across levels of covariates

New proposals

- Era of big data and artificial intelligence
 - How can these tools be used to improve efficiency of clinical studies?
- Borrowing
- Enrichment of study population based on predicted response
 - Exclusion/down-weighting of expected placebo responders

ightarrow Concerns with t1e control and external validity

- Develop new prognostic covariates ('synthetic covariates')
 - Adjust for these in primary analysis

 \rightarrow Promise to improve efficiency while preserving properties of 'classical' analyses

20 September 2022 EMADOC-1700519818-907465 Committee for Medicinal Products for Human Use (CHMP)

Qualification opinion for Prognostic Covariate Adjustment (PROCOVA[™])

PROCOVA

- Develop prognostic score for the outcome under control based on a historical data set independent from the study data
- Account for prognostic score when estimating the sample size of new trial
- Apply prognostic score as covariate in an ANCOVA model for a new trial
- Procedure can utilize a prognostic score generated by any prognostic model
 - Mechanistic models
 - Linear and non-linear statistical models
 - Models with interactions between covariates
 - Machine-learning-based methods
- Prognostic model development out of scope of the qualification procedure

CHMP qualification opinion

- PROCOVA could enable increases in power or precision of treatment effect estimates in controlled randomised clinical trials with continuous outcomes
- Method can be regarded a special case of ANCOVA sharing the properties of type 1 error control and asymptotically unbiased estimates of the treatment effect
- Advantage over using no adjustment or ANCOVA with single covariate adjustment should be justified to support application of the PROCOVA method

Remarks

- Comment on PROCOVA: Idea to develop prognostic score and adjust for it is not new
- Similar proposals were made/are currently discussed
 - Not all propose sample size reduction
 - Broader scope than PROCOVA: not restricted to linear models
- CHMP: Not intended to single out PROCOVA as 'the' method

Traditional principles challenged

- Stratify and/or adjust for clinically important covariates
 vs
 Adjust for prognostic score (on top) with no direct clinical interpretation
- Include no more than a few covariates
 vs
 Include a prognostic score covering the information from many covariates
- Simple functional form for relationship between covariates and outcome vs

Prognostic score based on complex prognostic model

Pros and cons

- Pros
 - Gain in efficiency
 - Only one covariate added
 - No concerns regarding degrees of freedom, numerical stability
- Cons
 - Adding synthetic covariate on top of adjusting may introduce collinearities
 - Prognostic score resulting from a complex, poorly understood model/black box?
 - Reproducible?
 - Interpretable?
 - Interpretability of subgroup analysis endangered?
 - PROCOVA handbook advises against using same model for subgroup by treatment interaction
- Do we sacrifice clinical interpretability for small p-values?

Linear models and synthetic covariates

- Targeted treatment effect (=estimand) is independent from covariates
- ANCOVA does not require that prognostic model is correct
- Interpretability
 - Do we need to understand the covariate?
 - Subgroups?
 - \rightarrow Potential benefits, not much harm?

Generalized linear and non-linear models and synthetic covariates

- Frequently used GLMs or non-linear models provide conditional treatment effects
 - Logistic regression, Cox regression
- Conditional treatment effect = (average of) treatment effect for patients with same covariates
- Targeted treatment effect depends on covariates
- Interpretation requires to understand on what is conditioned
- \rightarrow Usually not fulfilled for synthetic covariate
- \rightarrow Appears currently not recommendable
- Other GLMs or non-linear models providing unconditional effects?
 - Aiming to use a synthetic covariate is not a sufficient reason to use a specific estimand

Transparency

- Proposals were made to keep prognostic model to derive prognostic score confidential
 - Only score is provided to study sponsors
- Model needs to be understood by all stakeholders and transparent to public
- Who has access to training data sets?
 - Data protection
 - Consent
 - Data owners

Thank you very much for your attention!

Contact

Federal Institute for Drugs and Medical Devices Division Research, Unit Biostatistics and Special Pharmacokinetics Kurt-Georg-Kiesinger-Allee 3 D-53175 Bonn

Contact person Dr. Andreas Brandt andreas.brandt@bfarm.de www.bfarm.de Phone +49 (0)228 99 307-3797

Federal Institute for Drugs and Medical Devices

Short Topic EFSPI 2022 How would you think about this situation?

- Sponsor created a prognostic score
- It is a blackbox machine learning model
- Only internally validated with a hold-out test set
- Not adopted in clinical practice or used by other trials
- Score used as covariate in analysis of single pivotal randomized controlled trial
- With covariate: clinically relevant treatment difference & p = 0.01
- Without covariate: difference borderline clinically relevant & p = 0.08
- Sponsor argues that the drug should be approved, because
- This appropriately estimates the treatment effect an individual patient could expect
- Using such a covariate is solely a sponsor risk (for commonly used regression models mis-specified covariate relationships at worst reduce power, but do not inflate type I error)

20