

Experience with and learnings from regulatory interactions around innovative trial designs based on the NEOS study **Dieter A Häring**

EFSPI meeting Sep 14th 2023

Simulation studies for complex innovative study designs

- 1. Example of NEOS: Bayesian non-inferiority trial in pediatric MS
- 2. Summary of regulatory interactions
- 3. Innovative trial designs & regulatory interactions learnings from NEOS

Background

- Pediatric MS is rare: Only ~3-5% of MS cases start in childhood or adolescence^{1,2} ٠
- **Disease similarity:** Disease biology of is fundamentally similar (but not identical) across the age span^{3,4}
- **Vulnerable population:** Children with MS show higher disease activity (2-3 time higher • relapse frequency compared to adults)⁵, lose brain volume from the onset (i.e. no true remission)⁶, and have worse long-term prognosis, i.e. disabled at younger age⁷
- **High unmet need, competitive trial environment:**^{8,9} ~20 approved therapies in adults, • pediatric patients only 1 approved based on a successful randomized controlled trial (Gilenya, based on only successful trial so far, PARADIGMS)

¹ Ghezzi et al. (1997) Multiple sclerosis in childhood: clinical features of 149 cases. Multiple Sclerosis Journal

² Chitnis T et al. (2009) Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States. Multiple Sclerosis Journal

³ Waubant et al., (2019) Clinical trials of disease-modifying agents in pediatric MS: Opportunities, challenges, and recommendations from the IPMSSG. Neurology.

⁴ Dahlke et al., (2021) .Characterisation of MS phenotypes across the age span using a novel data set integrating 34 clinical trials (NO. MS cohort): Age is a key contributor to presentation.

⁵ Gorman et al., 2009 Increased relapse rate in pediatric-onset compared with adultonset multiple sclerosis. Arch Neurol 2009; 66: 54-9.

⁶ Arnold et al., 2019 Effect of fingolimod on MRI outcomes in patients with paediatric-onset multiple sclerosis: results from the phase 3 PARADIGMS study. Neurology, Neurosurgery & Psychiatry

⁵ Renoux et al. (2007) Natural history of multiple sclerosis with childhood onset. N Engl J 356: 2603-13.

⁸ Rose et al., (2016) Children with multiple sclerosis should not become therapeutic hostages. Therapeutic advances in Neurology.

⁹Sormani & Waubant (2021) Paediatric multiple sclerosis: a lesson from TERIKIDS. Lancet Neurology.

NEOS trial summary

- 2-year double-blind, triple-dummy Phase 3 study in pediatric MS to establish the efficacy and safety 2 novel MS treatments :
 - **New test drug 1: Kesimpta (ofatumumab):** first fully human anti-CD20 monoclonal antibody treatment, approved worldwide in adults
 - New test drug 2: Mayzent (siponimod): S1P modulator, approved worldwide in adults
- Non-inferiority design vs active control Gilenya (fingolimod):
 - Active control: Gilenya (fingolimod): Approved treatment for pediatric MS; reduced relapse rates vs interferon beta-1a by 82% in a randomized double-blind clinical trial (PARADIGMS¹)
 - Active control avoids placebo or low efficacy comparator, minimizing the risk of MS relapses, which can be associated with irreversible disability
- Primary endpoint: Annualized relapse rate (ARR), analyzed via negative binomial model (standard phase 3 endpoint in MS)
- Interim analysis for efficacy stopping when last patient completed 1 year

¹PARADIGMS is so far the only successfully completed RCT to confirm the efficacy of a DMT in pediatric MS.

Innovative design features – why?

-	beet
Non-inferiority design vs active control (de-facto standard of care, fingolimod)	Avoids low efficacy controls
 Choice of NI margin: Narrow enough to ensure efficacy of new test treatments, but wide enough to make it feasible. Informed by: Systematic literature review Meta-analysis to inform NI margin 	Scientifc rigorFeasibility
 Bayesian design Model-based extrapolation from adults to pediatrics after studying 'disease similarity' Robust MAP priors 	 Leverages existing knowledge about the disease and drugs Reduces sample size MAP priors mimimize risk of prior data conflict
 Adaptive design Efficacy stopping to make new tested drugs available as soon 	 Brings new tested medication to patients ASAP Interim analysis ensures adaptation of study duration
	 Non-inferiority design vs active control (de-facto standard of care, fingolimod) Choice of NI margin: Narrow enough to ensure efficacy of new test treatments, but wide enough to make it feasible. Informed by: Systematic literature review Meta-analysis to inform NI margin Bayesian design Model-based extrapolation from adults to pediatrics after studying 'disease similarity' Robust MAP priors Adaptive design Efficacy stopping to make new tested drugs available as soon

Summary of regulatory interactions

YYYYYYYYYYY**XXXXXXXXXX** YYXYXXYYY **YXXYXXXXX** YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY **XXXXXXXXXX** YYYYYYY**YXXYXXXXX** YXXXXXXXXX YYYYYYYYYY**XXXXXXXXXX XXXXXXXXXX** YYYYYYYYY **YXXYXXXXX** YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY **LYYLYYLY YYXXYXXYY LYYLYYLY** YYXYYXYYY YXXXXXXXX

Summary of regulatory feedback: Reaching global alignment for non-standard design features can be a challenge

Торіс	FDA CID discussions	EMA (PDCO and SAWP)
Extrapolation	 Concerns about extrapolation models relying on «unverifiable assumptions» Exploration and discussion of (all) other possible prognostic or effect modifying factors required Finally accepted after providing requested information 	No specific concerns based on submitted information
NI-margin (prior to start of study)	 Sponsor proposed margin of 3¹ deemed too large (some discounting is required) Lack of pediatric data to assess between-trial variability Systematic literature review and meta-analysis requested to have a comprehensive understanding all potentially relevant prior knowledge Finally, margin of 2 implemented based on FDA's advise 	 Initially proposed NI-margin of 3 was initially discussed as large but deemed acceptable for OMB PIP by PDCO based on scientific and feasibility considerations However, NEOS trial initiated with NI-margin 2.0 based on FDA feedback
NI-margin (after start of study)	 Margin 3 would now be deemed acceptable by FDA (FDA unsolicited letter) Adjustment of sample size to margin 3 requires discussion 	 Margin 3 deemed acceptable and adjustment of sample size to the primary NI-criterion deemed adequate
Bayesian design	 «Bayesian framework may be useful» Concerns about double-use of historical information in Bayesian non-inferiority design Extensive simulations requested to understand operating characteristics under all conditions; finally deemed adequate 	 Bayesian design not accepted for initial OMB PIP SAWP primarily concerned with lack of type I error control and subjectivity of weight given to historical information Accepted as feature of the final design
Interim analysis	An interim analysis for efficacy stopping is endorsed	 Interim analyis not accepted for initial PIP Concerns related to inadequate assessment of long-term safety Interim analysis not endorsed by SAWP due to adding another level of complexity to already complex design Interm analysis finally endorsed after clarifying its impact

¹ Initially sponsor proposed NI margin of 3.0 was derived based on the 95% confidence limit of the ARR-

7 ratio between fingolimod and interferon beta-1a based in PARADIGMS a phase 3 trial in pediatric multiple sclerosis. It would ensure superiority over historical data with Interferon beta-1a.

Innovative trial designs & regulatory interactions – learnings from NEOS

YYYYYYYYYYY**XXXXXXXXXX YYYYYYYY YXXYXXXXX XXXXXXXXXX XXXXXXXXXX YXXYXXXXX** YXXXXXXXXX YYXYYXYYY **XXXXXXXXXX** YYYYYYYYYY**XXXXXXXXXX** YYYYYYYYY **YXXYXXXXX** YYYYYYYYY YYYYYYYYYY **LYYLYYL YYXXYXXYY** LYYLYY YYXYYXYYY TATATATAT YYYYYYYYYYYXXYXXXYY

Stakeholder views on innovative study design – alignment needed to reach agreement

Patient

- Minimize risk (adverse events, low efficacy drugs)
- Provide access to tested drugs (highly efficacious, safe, easy to use)

Sponsor

 Bring efficacious and safe medications to patients as efficiently as possible (faster, lower sample size, but with scientific rigor)

Regulator

- Minimize erroneous
 decisions (type I & II errors)
- Caution: «no shortcuts»
- Fairness between competing sponsors
- Alignment between global regulatory agencies

Innovation breaks with established tradition

- Innovation deviates from «gold standard» in at least one dimension: «Why?»
- Simulations help in discussions of subjective components of innovation
 - Advantages of the novel design vs. a standard RCT? (e.g. patient burden vs sample size)
 - Weight given to historical data, e.g. Bayesian priors? (e.g. disease similarity)
 - When is type-I error inflation acceptable, if ever?
- Simulations («What if?») can help in aligning different stakeholders on best design options

- Acceptability of innovation influenced by the <u>clinical context</u>, «no one size fits all»
 - Collaboration between statisticians and clinicians is essential (sponsor, regulator)

Example: Type I error rates

Figure 3-2 Type I error rate for the primary analysis and selected sensitivity analyses

ARR<0.15: 1 relapse in > 6 years

Statistical finding

- Type I error rate is inflated when relapse rates on trial are very low.
- Interpretation of type I error: If relapses are rare, one may incorrectly conclude that the test treatment is non-inferior to the active control treatment.

Clinical context

 However, historically, pediatric MS patients always relapsed at high (ARR>0.5) frequency (systematic literature review and meta-analysis).

Type I error rate inflation is deemed <u>acceptable</u> in the specific clinical context:

• If patients relapse infrequently in the new RCT (on test and control drug) efficacy is very strongly implied (vs historical control).

Understanding operating characteristics under clinically plausible settings of parameters Before and After the study

Prior to study (simulations):

- Understand operating characteristics through simulations
- No cherry picking: Not only the «per-protocol scenario» but all other plausible scenarios should be covered.
- Need to take plausibility of scenarios into account when assessing results

• After the study (sensitivity analyses):

- Sensitivity analyses
- Tipping point analyses (across clinically plausible parameters)

Proposed guiding principles for complex innovative designs

Common objective (Patients, Sponsors, Regulators): Test the <u>efficacy</u> and <u>safety</u> of a new drug <u>efficiently</u> and with <u>low burden to patients</u>, without loss of <u>scientific rigor</u> to make <u>new therapeutic options</u> available to patients.

1. Understand and articulate advantage of innovative trial features over default solution

- Innovative design features should be preferred over standard trial options (only) if they have objective advantages.
- Simulations prior to the trial conduct help to understand and clearly articulate these advantages.

2. Understand operating characteristics and limit risk of erroneous decisions at the design stage

- **Simulations** *prior* to the trial provide understanding of operating characteristics under *other* plausible settings than the perprotocol assumptions, i.e. «no cherry picking», and help in aligning different stakeholders
- Power considerations: type II errors are particularly severe in pediatric & rare indications, «typically one shot on target»
- **Type-I error:** comprehensive understanding (not necessarily control) of type I error required based on simulations; provide clinical context
- **Bias:** Assess possible sources and quantitatify impact of bias under clinically plausible scenarios
- **Extrapolation**: Extrapolation approaches are useful when the relationship between the source and target population is well understood
- 3. Results and regulatory decisions should be explainable and supportable by all stakeholders
 - Clinical & statistical sucess criterion should be predefined in confirmatory trials (per-protocol scenario)
 - Tipping point analyses after the trial (across clinically plausible scenarios) help understanding the robustness of results;
 e.g. less weight given to historical data

XXXXXXXXXX TTTTTTT YXXYXXXXX YYYYYYYYY LYYLYYLYL YYXYXXYYY **XXXXXXXXXX YXXYXXXXX** YYXYYXYYY YXXYXXXXX \mathbf{Y} **XXXXXXXXXX** YYXYXXYYY **XXXXXXXXXX** YYYYYYYY YXXYXXXXX YYYYYYYYY LYYLYYLYY YYYYYYYYY **XXXXXXXXXX** YYJYYJYYY JYYJYYJYJY YYJYYJYYY **YXXYXXXXX TTTTTTTT YXXYXXXXX** YYXYXXYYY LYYLYYLYLY YYYYYYYYYYLYYLYYLYL YYXYYXYYY **YXXXXXXXX** \mathbf{X} **XXXXXXXXXX** \mathbf{x} XXXXXXXXXXX YYYYYYYYY **XXXXXXXXXX** YYYXYYYYY

Thank you