Beyond the classical type I error: Bayesian metrics for Bayesian designs using informative priors

Nicky Best (GSK), Maxine Ajimi (AZ), Beat Neuenschwander (Novartis), Gaëlle Saint-Hilary (Saryga), Simon Wandel (Novartis) on behalf of EFSPI/PSI Historical Data SIG

- Regulators increasingly open to use of external data in particular scenarios, e.g.
 - >FDA's Complex Innovative Designs (CID) initiative includes several projects using external data in pivotal studies
 - >ICH E11A Pediatric Extrapolation Draft Guideline to use external/reference data
 - \blacktriangleright Several examples of drug approvals granted based on non-randomized studies using external controls^[6]
- Bayesian methods offer an appealing approach to incorporate external evidence via the use of informative prior distributions
 - >Common practice to evaluate Bayesian designs: using simulations to understand frequentist operating characteristics, including the classical type I error
 - >Classical type I error cannot be strictly controlled^[10,11] in a Bayesian design with informative priors, and may be above, below or equal to its nominal level
 - > The FDA^[8] recommends that for Bayesian designs using informative priors, appropriate alternative trial characteristics should be considered.

• We present several alternative Bayesian (i.e. fully probabilistic) metrics to evaluate the risk of a Bayesian trial producing false positive conclusions

Study Success = $I\{(\Pr(\delta > \delta_{null} \mid y) > 1 - \alpha\}$ θ_t , θ_c = true treatment effects on active, control arms; $\delta = \theta_t - \theta_c$ = treatment contrast; Notation: • We define the following metric $M_1 = \int Pr(Study Success \mid \delta) p(\delta) d\delta$ (1) where $p(\delta)$ is a suitable probability distribution describing values of the true treatment contrast

Analysis Priors and Design Priors

• Analysis Prior – used in analysis of the current trial and represents best reflection of the evidence and the corresponding uncertainty • Design Prior – used for design evaluation to calibrate Bayesian designs under different assumptions about the true parameter value(s)

• Several common metrics are special cases of M₁:

 \succ Classical type 1 error: $p(\delta) = Dirac$ measure with point mass at $\delta_{null} \Rightarrow M_1 = Pr(Study Success | \delta = \delta_{null})$

- \succ Classical power: $p(\delta)$ = Dirac measure with point mass at $\delta_{alt} \Rightarrow M_1 = Pr(Study Success | \delta = \delta_{alt})$
- \blacktriangleright Assurance ^[15] (average power): $p(\delta)$ = design prior reflecting our uncertainty around hypothesized treatment effect

Metrics when borrowing information on controls

- Under the null, $\theta_t = \theta_c + \delta_{null}$, leading to the following version of metric (1): $M_{2} = \int Pr(Study Success | \theta_{c}, \theta_{t} = \theta_{c} + \delta_{null}) p(\theta_{c}) d\theta_{c}$ (2) \triangleright Classical type 1 error is a "pointwise" rate, depending on true value of θ_c > The Bayesian metric (2) is the average (unconditional, or marginal) of this classical type 1 error wrt the design prior $p(\theta_c)$
- For data generated under a normal likelihood, the average type I error defined in (2) is strictly controlled at level α if the analysis prior is also used as the design prior $p(\theta_c)$; asymptotically controlled at level α for any likelihood (proof: appendix of ArXiv pre-print)

Metrics when borrowing information on the treatment contrast

- For a Bayesian design with prior information on the treatment contrast, we need a design prior, $p(\delta)$, that is consistent with the assumed null treatment effect
- Usually, analysis prior supports a positive effect of the investigational treatment \Rightarrow prior in conflict with null treatment effect \Rightarrow inflated classical type 1 error ^[10,11]
- We propose an **alternative metric M₃** as follows

 $\int \Pr(Study \, Success | \delta) \frac{p(\delta)I\{\delta \leq \delta_{null}\}}{\Pr(\delta \leq \delta_{null})} d\delta$ $M_3 =$

$$\times \quad \Pr(\delta \leq \delta_{null})$$

Prob treatment effect is null or harmful

Average type 1 error under null (truncated) design prior

 $\int_{\delta \leq \delta_{null}} \Pr(Study \, Success | \delta) \, p(\delta) d\delta$

Prob false positive result =

Joint prob that trial is success and true treatment effect is null or harmful

Case Study 1: Borrowing historical placebo data (example in Crohn's Disease^[24,25])

0	
,	Analysis prior

Case Study 2: Borrowing historical data on treatment contrast (Paediatric example^[28])

Probability of success curves for

Design priors for treatment contrast

Bayesian average («unconditional») type I error (Metric M₂)

Placebo Analysis prior	Design prior for placebo effect				
	Vague	Sceptical	MAP	Robust MAP	
Vague	2.5%	2.5%	2.5%	2.5%	
MAP	48.5%	13.4%	2.5%	3.2%	
Robust MAP	45.6%	8.8%	2.2%	2.5%	

Bayesian metrics for different analysis and design priors

Metric	Analysis prior for treatment difference	Design prior for treatment difference				
		Truncated adult	Truncated robust mix	Point mass at 0*		
Average type 1 error (metirc M ₁)	Vague	2.1%	0.1%	2.5%		
	Robust mixture	30.8%	2.5%	33.2%		
		Adult	Robust mix	Spike & smear		
Design prior prob of no benefit	-	0.004%	15.003%	15%		
Prob of false +ve (metric M ₃)	Vague	<0.001%	0.015%	0.375%		
	Robust mixture	0.001%	0.375%	4.982%		
*gives special case of M_1 = classical type 1 error						

• Strict control of the classical (frequentist) type 1 error is not possible when leveraging prior information in a Bayesian clinical trial design

• We propose that average type I error (which is analogous to assurance under the null hypothesis) is also a relevant metric to inform decision-makers

• In designs where information is borrowed on the treatment contrast, we also recommend calculation of the probability of actually declaring a false positive result

• The strong focus on classical (frequentist) type 1 error control for pivotal studies has emphasized consideration of the bias question only. We argue that a more holistic viewpoint is required to judge designs that, by construction, aim at optimizing the **bias-variance trade-off**.

References and further details available in ArXiv pre-print: http://arxiv.org/abs/2309.02141