# Estimation methods for estimands using the treatment policy strategy

**Tobias Mütze,** *on behalf of the EIWG Estimation subteam*Basel
September 11, 2024

#### **Acknowledgements**

James Bell (Elderbrook Solutions GmbH)

Thomas Drury (GlaxoSmithKline)

Christian Bressen Pipper (Novo Nordisk A/S)

Marian Mitroiu (Biogen International GmbH)


Khadija Rerhou Rantell (MHRA)

Marcel Wolbers (Roche)

David Wright (AstraZeneca)

Lorenzo Guizzaro (EMA)

## Adequate handling of missing data essential for estimation of treatment policy estimand



- Data after the intercurrent event is relevant for a treatment policy estimand
- Subjects withdrawing from the study prior to the collection of the endpoint create missing data
  - Even with best efforts, missing data are inevitable in most trials, particularly post-IE
- Standard MMRM models often do not adequately handle missing data
- Common models for imputing missing data in treatment policy setting
  - Reference-based multiple imputation, e.g., jump-to-reference, copy increments in reference, etc.
  - "Retrieved Dropout"

## Imputation models for treatment policy estimands differ in clinical assumptions and statistical properties

|             | Retrieved dropout models                                                                                                                               | Reference-based multiple imputation                                                                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assumptions | <ul> <li>Missing data after IE similar to<br/>observed data after IE within same<br/>study arm</li> </ul>                                              | <ul> <li>Missing data after IE similar to observed data from the reference group</li> <li>Requires choice of clinical assumptions and their justification</li> </ul> |
| Pros        | <ul> <li>Negligible bias in realistic scenarios<sup>1,2</sup></li> <li>No assumptions about treatment effect</li> </ul>                                | <ul> <li>Controls type I error rate<sup>1</sup></li> <li>No relevant standard error inflation<sup>1</sup></li> </ul>                                                 |
| Cons        | <ul> <li>Issues when insufficient data after IE:</li> <li>inflated standard errors</li> <li>power loss</li> <li>difficult/impossible to fit</li> </ul> | <ul> <li>Assumptions about treatment effect for<br/>subjects with missing post-IE data</li> <li>Deviations could cause bias</li> </ul>                               |

#### **Discussion questions**

- 1. When estimating a (primary) estimand that adopts a treatment policy strategy, would regulators accept an analysis approach that imputes the missing values using a reference-based imputation method if the assumptions of the imputation approach can be clinically justified?
- 2. If it is unclear which assumptions are appropriate for the missing data imputation, which principles should guide the selection of the imputation model, e.g., type I error rate control, conservative bias for the treatment effect estimate (i.e., underestimate the treatment effect), bias-variance trade-off, clinical plausibility?
  - What is the priority order of the listed criteria?
  - Are there other important criteria which are not listed?

### Thank you

