Target trial emulation: Because not all causal questions can be answered by randomized trials Miguel Hernán ### Other relevant engagements Annals of Internal Medicine Methods Editor Karolinska Institutet Principal Researcher ProPublica Adviser # Why causal inference? Because decisions must be made ### Regulatory decisions - Approve or reject a new drug? - Add stronger warnings to a drug label? - o Recall an already approved drug? #### HTA decisions - Recommend against reimbursement of a new drug? - o Recommend a drug for high-risk patients only? - o Remove a listed drug from reimbursement? Causal inference is about learning what works to help people (including regulators and HTA agencies) make better decisions ### Decision making needs to be guided by causal evidence obtained from data - Now do we generate data to guide decision making? - o How do we make causal inferences? - o How do we learn what works? - The standard scientific answer: - Conduct a randomized experiment - A relevant randomized trial would, in principle, answer each causal question about comparative effectiveness and safety - o Interference/scaling up issues aside # But randomized trials can't possibly answer all questions expensive unethical impractical untimely - oor too many populations of interest, or too many outcomes - oor simply nobody is willing to fund it (head-to-head trials?) - Decisions still need to be made. What do we do? - We generate or repurpose observational data - oor else we wouldn't have any human data to support decisions 11/1/11/11 ### A boring debate - o"I believe all regulatory and HTA decisions should be based on randomized trials" - o "But that's impossible." - o"I still believe all regulatory and HTA decisions should be based on randomized trials" - o "But..." The question isn't WHETHER to use observational data, but HOW to use observational data in the best possible way ### Types of observational data #### Research data - Generated specifically for research - Cohort, case-control, casecrossover studies... - o Biobanks - o Disease registries - o Randomized trials - 0 ... #### Found data - Generated for nonresearch purposes - Nepurposed for research - o Electronic health records - o Insurance claims databases - National registers - 0 ... "Real world data" "Routinely collected data" ### We have LOTS of observational data - In the 1970s epidemiologists started to work with healthcare databases - Nata quantity and quality keep increasing - Millions of individuals followed for many years - Detailed information on their therapies, clinical and sociodemographic factors, health outcomes... - ➤ This is so promising, and yet... ## The medical literature is full of spectacular failures of causal inference from observational data - - o 1 with research data - o 1 with found data ## Claim: Hormone therapy prevents coronary heart disease in postmenopausal women ### ### The New England Journal of Medicine VOLUME 335 Copyright, 1996, by the Massachusetts Medical Society NUMBER 7 POSTMENOPAUSAL ESTROGEN AND PROGESTIN USE AND THE RISK OF CARDIOVASCULAR DISEASE Results We observed a marked decrease in the risk of major coronary heart disease among women who took estrogen with progestin, as compared with the risk among women who did not use hormones ## Hormone therapy DOES NOT prevent coronary heart disease in postmenopausal women Nandomized trial (7 years later) Estrogen plus Progestin and the Risk of Coronary Heart Disease #### CONCLUSIONS Estrogen plus progestin does not confer cardiac protection and may increase the risk of CHD among generally healthy postmenopausal women, especially during the first year after the initiation of hormone use. This treatment should not be prescribed for the prevention of cardiovascular disease. ### Claim: Statin therapy prevents cancer ### ➤ Observational study The NEW ENGLAND JOURNAL of MEDICINE #### ORIGINAL ARTICLE #### Statins and the Risk of Colorectal Cancer N Engl J Med 2005;352:2184-92. #### CONCLUSIONS The use of statins was associated with a 47 percent relative reduction in the risk of colorectal cancer after adjustment for other known risk factors. Because the absolute risk reduction is likely low, further investigation of the overall benefits of statins in preventing colorectal cancer is warranted. ### Statin therapy DOES NOT prevent cancer Meta-analysis of randomized trials (months later) #### Statins and Cancer Risk JAMA, January 4, 2006—Vol 295, No. 1 A Meta-analysis | Krista M. Dale, PharmD | | |---------------------------|--| | Craig I. Coleman, PharmD | | | Nickole N. Henyan, PharmD | | | Jeffrey Kluger, MD | | | C. Michael White, PharmD | | **Context** Statins are cholesterol-lowering drugs that have been proven in randomized controlled trials to prevent cardiac events. Recent retrospective analyses have suggested that statins also prevent cancer. **Objectives** To investigate the effect of statin therapy on cancer incidence and cancer death and to analyze the effect of statins on specific cancers and the effect of statin lipophilicity or derivation. **Conclusions** Statins have a neutral effect on cancer and cancer death risk in randomized controlled trials. We found that no type of cancer was affected by statin use and no subtype of statin affected the risk of cancer. ### Just two examples from a very long list - The selected examples have serious design flaws - othough, interestingly, neither were retracted - ➤NOTE: Publication of observational results may interfere with the design and recruitment of future trials - > not only observational estimates are wrong, but they prevent us from getting the correct ones Why so many observational analyses have biased effect estimates? 11/1/11 ### Two possible explanations for the failures of causal inference from observational data #### Note: N - Too much confounding and measurement error - Because treatments are not randomly assigned, outcome differences between treatment groups are due to differences in the characteristics of treated and untreated individuals rather than to treatment" - o Data biases ### Note: N - Data analysis doesn't respect basic principles of study design - o Design biases 11/1/11 ## Design biases: How do we ensure that the design of observational analyses is sound? - **N** Easy - We have well established principles to analyze data from randomized trials - ofor example: start the follow-up at the time that eligible individuals are assigned to a treatment strategy - Let's apply the same principles to the observational data - o structure the observational dataset and analyze it as you'd do for a randomized trial ### Reminder: We analyze observational data because we don't have a randomized trial Observational analyses are not our preferred choice for causal inference - For each observational analysis for causal inference, we can imagine a hypothetical randomized trial that we would prefer to conduct - olf only it were possible - othat hypothetical trial is our causal target ### The Target Trial - The (hypothetical) randomized trial that we would like to conduct to answer a causal question - o To learn what works and what harms - A causal analysis of observational data can be viewed as an attempt to emulate some target trial - olf we cannot translate our causal question into a target trial, then the question is not well-defined ### The Target Trial - Suggested more or less explicitly by many authors - o Dorn (1953), Wold (1954), Cochran, Rubin, Feinstein, Dawid... - ofor simple settings with a time-fixed treatment and a single eligibility point - Explicit generalization to time-varying treatments and multiple eligibility points - o Robins (1986) - o Hernán, Robins. Am J Epidemiol 2016 # The Target Trial concept leads to a simple algorithm for causal inference - 1. Ask the causal question (point at the Target) - Specify the protocol of the Target Trial - 2. Answer the causal question (shoot the Target) - Option A: Conduct the Target Trial - Option B: Use observational data to explicitly emulate Target Trial - Then apply appropriate causal inference analytics ### Step 1 Specify Target Trial protocol Eligibility criteria Treatment strategies Assignment **Outcomes** Start/end of follow-up Causal contrasts Identifying assumptions Data analysis ### Step 1 Step 2 Specify Target Trial protocol Emulate Target Trial protocol | Eligibility criteria | Data mapping for eligibility criteria | |--|---| | Treatment strategies | Data mapping for each component | | Assignment | Data mapping for assignment | | Outcomes | Data mapping for outcomes | | | | | Start/end of follow-up | Same | | Start/end of follow-up Causal contrasts | Same Observational analogs of contrasts | | | | ## Explicitly emulating a target trial eliminates most design biases - ➤ But not data biases like confounding - o because of lack of randomization - Now important is it to eliminate design biases? - odue to deviations from the emulation of the target trial - Nhat happens if we adopt the target trial framework to the 2 previous examples of observational failures? ### Hormone therapy and coronary heart disease: No randomized-observational discrepancy #### Observational Studies Analyzed Like Randomized Experiments An Application to Postmenopausal Hormone Therapy and Coronary Heart Disease Miguel A. Hernán, a,b Alvaro Alonso, Roger Logan, Francine Grodstein, A Karin B. Michels, Alvaro Walter C. Willett, A,d,f JoAnn E. Manson, and James M. Robins M. Robins A, Robins M. Robi Epidemiology 2008; 19: 766-779 Authors' Response, Part I: Observational Studies Analyzed Like Randomized Experiments Best of Both Worlds Epidemiology 2008; 19: 789-792 Miguel A. Hernána and James M. Robinsb ### Statins and cancer: No randomized-observational discrepancy Barbra Dickerman et al. Nature Medicine 2019; 25: 1601-1606 NATURE MEDICINE ANALYSIS Fig. 2 | Standardized cancer-free survival curves comparing statin therapy with no statin therapy, CALIBER, 1999-2016. Observational analog to an intention-to-treat analysis (a) and per-protocol analysis (b). 11/11/11 ## Contrary to popular belief, the problem wasn't the lack of randomization - No But the incorrect design of the observational analyses - Determination of eligibility and treatment assignment were not synchronized at the start of follow-up (time zero) - o Immortal time and selection bias - o Hernán et al. J Clin Epidemiol 2016; Epidemiology 2025 - Nothing wrong with the observational data but with HOW the data were used ### Two A possible explanations for the failure of causal inference from observational data - Nobservational datasets are bad - Too much confounding? - o Data biases - ➤ Observational datasets are not used well - Data analysis doesn't respect basic principles of study design - Design biases ### All of this begs the question: How bad is the lack of randomization by itself? - To answer this question, we first need to ensure that that the observational analyses are well designed - **N** That is, - o First, we explicitly emulate a target trial - Second, we worry about confounding - We can't even try to adjust for confounding when there is immortal time and selection bias 11/1/11/11 ### A possible criticism of the previous two examples You knew the right answer because these observational analyses were done after the randomized trials!" Let's review other observational emulations of target trials that were conducted BEFORE the randomized trials ## Early antiretroviral therapy for persons with HIV: Benefit, later confirmed by randomized trial **Annals of Internal Medicine** ORIGINAL RESEARCH When to Initiate Combined Antiretroviral Therapy to Reduce Mortality and AIDS-Defining Illness in HIV-Infected Persons in Developed Countries An Observational Study Lauren Cain et al. Annals of Internal Medicine 2011: 154:509-515 Comparative effectiveness of immediate antiretroviral therapy versus CD4-based initiation in HIV-positive individuals in high-income countries: observational cohort study Sara Lodi et al. Lancet HIV 2015: 2:e335-343 ## Tocilizumab and mortality in critically ill COVID-19 patients - - Shruti Gupta, David Leaf et al. JAMA Internal Medicine 2021; 181:41-51 Research JAMA Internal Medicine | Original Investigation Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19 11/1/11 ## Anticoagulants and mortality in critically ill COVID-19 patients - No effect. Later confirmed by a randomized trial. - Hanny Al-Samkari et al. Annals of Internal Medicine 2021; 174:622-632 #### ORIGINAL RESEARCH **Annals of Internal Medicine** Thrombosis, Bleeding, and the Observational Effect of Early Therapeutic Anticoagulation on Survival in Critically III Patients With COVID-19 ## Plasma therapy and mortality in COVID-19 patients - No effect. Later confirmed by randomized trials - o Kelly Cho et al. Journal of Infectious Diseases 2021; 224: 967-975 The Journal of Infectious Diseases MAJOR ARTICLE Early Convalescent Plasma Therapy and Mortality Among US Veterans Hospitalized With Nonsevere COVID-19: An Observational Analysis Emulating a Target Trial ## Vaccine booster and hospitalization from SARS-CoV-2 Delta variant - Strong benefit. Later confirmed by a randomized trial - o Noam Barda, Noa Dagan et al. Lancet 2021; 398: 2093-2100 - o (the trial findings were published after Delta had disappeared) #### THE LANCET Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study Noam Barda*, Noa Dagan*, Cyrille Cohen, Miguel A Hernán, Marc Lipsitch, Isaac S Kohane, Ben Y Reis†, Ran D Balicer† 11/1/10 ## But randomized trials and observational emulations are not in competition - Randomized trials and observational emulations are complementary approaches - ↑ Trials can answer some questions but not all questions - Even for a particular treatment, multiple questions arise about subgroups of patients, duration of follow-up, outcomes... - Observational emulations can be used to extend the inferences from a trial to other causal questions - o But only after having replicated the same answers as the trial 11/1/11 ### Benchmarking Use effect estimates from randomized trials to benchmark effect estimated from observational emulations - If benchmarking is successful, extend the inferences from the trials using the observational data - o Dahabreh et al. Epidemiology 2020 ## mRNA vaccine effectiveness for serious outcomes after benchmarking for less severe ones (infection) #### **Observational emulation** Dagan et al. N Engl J Med 2021; 384;1412-23 #### A Documented SARS-CoV-2 Infection Cumulative Incidence (%) 35 Days No. at Risk Unvaccinated 596.618 413.052 261.625 4132 596,618 413,527 262,180 187,702 108,529 4262 Cumulative No. of Events Unvaccinated 2362 3971 5104 6053 6100 4456 3533 Vaccinated 1965 4124 4405 4460 ### Phase 3 randomized trial ### Cancer treatment and overall survival - Estimates in underrepresented populations after benchmarking to other populations - o Lucia Petito, Xabier García-Albéniz et al. JAMA Network Open 2020; 3 Original Investigation | Oncology Estimates of Overall Survival in Patients With Cancer Receiving Different Treatment Regimens Emulating Hypothetical Target Trials in the Surveillance, Epidemiology, and End Results (SEER)-Medicare Linked Database ## Effectiveness and safety of infertility treatments Estimate effects on rare outcomes (maternal and neonatal complications) after benchmarking to common ones oYu-Han Chiu et al. Fertility and Sterility 2022; 117: 981-991 Fertility and Sterility ORIGINAL ARTICLE | VOLUME 117, ISSUE 5, P981-991, MAY 01, 2022 Effectiveness and safety of intrauterine insemination vs. assisted reproductive technology: emulating a target trial using an observational database of administrative claims 11/11/11 ## Effectiveness and safety of infertility treatments ➤ Estimate effects on rare outcomes (teratogenic effects) after benchmarking to common ones o Jennifer Yland et al. Human Reproduction 2022; 37: 793-805 human reproduction ORIGINAL ARTICLE Reproductive endocrinology Emulating a target trial of the comparative effectiveness of clomiphene citrate and letrozole for ovulation induction 11/1/11 ### Is the Target Trial Framework necessary? - Don't we already have other frameworks to articulate causal questions? - **N**PICO - oThis is a simplified version of the target trial framework - ➤ Estimand framework (ICH E9 Addendum) - This is an element (or two, it's confusing) of the target trial framework ## PICO is an incomplete version of the target trial framework #### Target trial protocol Eligibility criteria Treatment strategies Assignment **Outcomes** Start/end of follow-up Causal contrasts Identifying assumptions Data analysis - P for Eligibility criteria - IC for Treatment strategies - o but typically oversimplified - o Intervention: Treatment - o Control: No treatment - N O for Outcome - Other elements of the protocol are not explicitly defined by PICO ## The ICH E9 Estimand framework is about one element of the target trial framework ### Target trial protocol Eligibility criteria Treatment strategies Assignment **Outcomes** Start/end of follow-up Causal contrasts Identifying assumptions Data analysis #### Causal estimand - An estimand is just something we want to estimate - A causal estimand is defined by the elements of the target trial protocol ## The ICH E9 Estimand framework is about one element of the target trial framework ### Target trial protocol Eligibility criteria Treatment strategies Assignment **Outcomes** Start/end of follow-up Causal contrasts Identifying assumptions Data analysis - The "estimand framework" focuses on the causal contrast only - o Intention-to-treat effect (treatment policy effect??) - o Per-protocol effect (again, under other names) - and conflates it with other elements of the estimand - "intercurrent events" combine definitions of deviations from protocol (treatment strategies) with competing events (causal contrast) # Evidence-based decision making requires evidence - ➤ Other things being equal, reasonable people will always prefer their evidence from randomized trials - But we can't expect to have evidence from randomized trials to support all decisions at all times - Nhen we don't have the target trial of interest, we try to emulate it using observational data 11/1/100