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Al basics
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« High-parameter models capable of Hidden LZ
processing complex input data Loyer ‘ '\\ St
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« White box, black box and explainable Al ...

« Large data sets or transfer learning -
needed for development e W,
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Separating the hope from the hype

« We are not getting AGI anytime soon

« Encoder models are still the dominating workhorse when it comes to
delivering business value

» LLMs are easy to overestimate — beware of "imitation of work”

» Select use cases where the output from the model is the actual value, rather
than a proxy for an underlying value (such as an assessment)
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EMA reflection paper on Al

* Provides considerations on the use of artificial
intelligence (Al) and machine learning (ML) in
the lifecycle of medicinal products
o Describes the current experience in the EMRN
o Acknowledges fast evolution of in the field of Al/ML

o Should be read in coherence with both legal requirements
and overarching EU principles on Al, data protection, and
medicines regulation

o Not to be considered a regulatory guidance document

* Lead: CHMP Methodology Working Party
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Al in the medicinal product lifecycle

» Al and ML tools can - if used correctly - effectively support the
acquisition, transformation, analysis, and interpretation of data within
the medicinal product lifecycle.

« Al introduces new risks that need to be mitigated to ensure the safety
of patients and integrity of clinical study results.

* Important differences between the human and veterinary domain
include legal bases, regulatory requirements and ethical issues.
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Key regulatory principles

* |t is the responsibility of the applicant or MAH to ensure that all algorithms,
models, datasets, and data processing pipelines used are fit for purpose
and are in line with ethical, technical, scientific, and regulatory standards

« The applicant or MAH is expected to provide a scientific base along with
sufficient technical details to allow comprehensive assessment of any
Al/ML systems used in the medicinal product lifecycle, the integrity of data, and
generalisability of models to the target population and specific context of use.

« While acknowledging that Al technology holds the potential to improve many
aspects of the medicinal product lifecycle, trustworthiness for regulators,
payers and patients alike must not be compromised by the introduction of
new technology.
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A risk-based approach

» Arisk-based approach for development, deployment and performance
monitoring of Al and ML tools allows developers to pro-actively define and
mitigate risks throughout the Al/ML system lifecycle.

* The degree of risk depend on several factors and may vary throughout the
lifecycle of the Al-system.

Such factors include architecture of the Al technology, the context of use
and the degree of influence the Al technology exerts.

) Ty




Managing overfitting and data leakage

» Depending on the level of risk/impact and context of
use, the risks of overfitting and data leakage should |
be addressed proportionally A

 For high regulatory impact settings such as in relation A
to the primary endpoint in late-stage clinical trials,
prospective testing is expected ——

 For low-risk settings, testing on hold-out retrospective T~
data may be acceptable

Y

« Cross-validation can support internal generalisability

« Sensitivity analyses based on a calendar-time train-
test data splits are encouraged
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Interpretability and explainability

« Everything else being equal, the use of

transparent (interpretable) models is preferred R
» Use of black box models may be acceptable if oo~ o (R

needed to achieve satisfactory performance . oo gl

and/or robustness, but require a more rigid B ..

validation/test protocol ERLE l.
 The use of explainability techniques (xAl) - ) "

should be used whenever possible, to provide T N T

. E[fX)]
both global and local explanations of model
behavior

(/) LAKEMEDELSVERKET




Upcoming EMA guidelines on Al

« Several comments covered topics or requests for prescriptive regulatory detail
at a level that cannot be included in the format of an EMA reflection paper

« CHMP Methodology Working Party (MWP) workplan from 2025 onwards
includes development of specific guidance on:

o Al in clinical development

o Al in pharmacovigilance
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RADAR - raw data augmented review

* MPA has been actively using raw data analysis for efficacy data, clinical
chemistry/haematology and pharmacometrics

« Raw data analysis is valuable in various procedural roles but needs close
integration between biostatistics and clinical expertise to create value

» An Al-driven tool (RADAR - raw data augmented review) has been developed
by the MPA to enable quick, no-code analysis of CDISC ADaM datasets
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RADAR - system architecture
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RADAR - workflow

Load Data Merge Tables Query Data View Data

Select Table

adgsadas_1 v

[T Explain Generated Code

Query:

Look at the subset of data where EFFFL="Y" and ANLOTFL = "Y" for AVISITN = 24 and perform a linear regression for how CHG depends on TRTPN. Print the summary of the model so that P-values are shown. Treat TRTPN as a continuous value. Also plot the

distribution of CHG for this subset per TRTP specifically (different colours per category).

Generate and Execute H Generate ‘

Code:

§ Perform linear regressicn
model <- lm(CHG ~ TRT

data = subset_data)

# Print the summary of the model

summary (model)

ot the distribution of CHG r this subset per TRIP specifically (different colours per

k3
category)

library(ggplot2)

ggplot (subset_data, aes(x = CHG, fill = TR

geom_histogram({binwidth = 1, alpha = 0.6, position = "identity") +

scales = "free") +

facet_wrap (~TRT
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Call:
Im(formula = CHG ~ TRTPN, data = subset_data)

Residuals:
Min 1Q  Median 3Q Max
-13.5803 -3.3827 -0.5465 3.1089 15.1089

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.58035  ©.57847 4.523 9.72e-06 #*
TRTPN -0.01276  ©.61627 -1.243  0.215

Signif. codes: @ ‘+x#x’' 9,001 **x’ 9,081 ‘*’ 0.05

Residual standard error: 5.261 on 232 degrees of fr
Multiple R-squared: ©.006611, Adjusted R-squared:
F-statistic: 1.544 on 1 and 232 DF, p-value: ©.215

Froquency

Distribution of CHG per Treatment Group
Pracebo Xanomeine High Dose  Xanamele Low Dose

TRTP
Placebo
Xanomeine High Dose.

Xanomeine Low Dose.




Al for medicines regulation: Scientific output 2022-2024
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Acknowledgments classification training, we achieve close to human-level performance in this task. Model
architectures based on less complex technical foundation such as bag-of-words approaches

and LSTM neural networks trained with random initiation of weights appear to perform less well,
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Supporting information

y of these concepts varies from model to
model and between explanation methods, and the analysis of misclassified reports indicates that reporting style may affect

References prediction cutcomes.
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Thank you for your attention.

Credits:  Erik Bergman, Luise Durlich, Seamus Doyle, Victor Lindeman, Samuel Fransson

Contact:  gabriel.westman@lakemedelsverket.se
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