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Example 1: Bayesian shrinkage estimation for subgroup effects

Chronic respiratory disease

Ph3 trial

Active v control (N = 150 per arm)

Primary endpoint: CFB in FVC (ml)

MCID = 100ml

SD = 260ml

Subgroups: Regions (4)



Rationale for shrinkage analysis

• Realistic belief : subgroups might differ slightly but generally 
similar in how they respond to the treatment 

➢ “Does knowing the effect in subgroup A tell you anything 
about what to expect in subgroup B?”

➢ “Suppose I ask you to predict the treatment effect in 
subgroup B. If I tell you the effect in subgroup A, does this 
influence your prediction?”
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Rationale for shrinkage analysis

• Realistic belief : subgroups might differ slightly but generally 
similar in how they respond to the treatment 

➢ “Does knowing the effect in subgroup A tell you anything 
about what to expect in subgroup B?”

➢ “Suppose I ask you to predict the treatment effect in 
subgroup B. If I tell you the effect in subgroup A, does this 
influence your prediction?”

• Assuming exchangeability often more reasonable than 
independence

• Exchangeability ≠ identical effects

• Non-exchangeability → structure that can be modeled

• Statistical rationale: shrinkage gives lower MSE than 
independent estimates 

Exchangeability assumption



Shrinkage estimation for subgroup effects: Bayesian statistical model

𝜃𝑗 , 𝜎𝑗  = estimated mean & SE of treatment effect in subgroup j 

𝜇𝑗  =  true treatment effect in subgroup j 

𝜇 =  overall treatment effect 

𝜏= between-subgroup standard deviation (heterogeneity)

𝜃𝑗 ∼ 𝑁(𝜇𝑗 , 𝜎𝑗
2)

𝜇𝑗 ∼ 𝑁(𝜇, 𝜏2)

𝜇 ∼ 𝑝(𝜇)

𝜏 ∼ 𝑝(𝜏)
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Prior on 𝜏 - Start by considering fixed values

Distribution of absolute difference 𝜇𝑗 − 𝜇𝑘  between treatment effects in 2 
randomly selected subgroups for different fixed values of 𝜏

Assumed within-group sampling SD of endpoint = 260 ml;   MCID = 100 ml



Prior on 𝜏 - Start by considering fixed values

𝝉 Quantiles of distribution of 
𝝁𝒋 − 𝝁𝒌

2.5% 50% 97.5%

26 ml (0.1 SD) 1 ml 25 ml 82 ml

65 ml (0.25 SD) 3 ml 62 ml 206 ml

130 ml (0.5 SD) 6 ml 124 ml 412 ml

260 ml (1 SD) 12 ml 248 ml 824 ml

Distribution of absolute difference 𝜇𝑗 − 𝜇𝑘  between treatment effects in 2 
randomly selected subgroups for different fixed values of 𝜏

Assumed within-group sampling SD of endpoint = 260 ml;   MCID = 100 ml



Prior on 𝜏 – choose a distribution to describe 
plausible range of values for 𝜏

Half-Normal(𝝓) is often a reasonable 
choice of prior for the between-
subgroup heterogeneity 
(Rover et al (2021), Wang et al (2024), 
Spiegelhalter et al (2004))



Prior on 𝜏

Half-Normal(𝝓) is often a reasonable 
choice of prior for the between-
subgroup heterogeneity 
(Rover et al (2021), Wang et al (2024), 
Spiegelhalter et al (2004))

Choosing value of 𝜙:
• 𝜏 ∼ 𝐻𝑁(𝜙) has median 0.67𝜙 and 

95% interval (0.03𝜙 – 2.24𝜙)

Prior scale 
parameter, 
𝝓

Quantiles of between subgroup heterogeneity, 𝝉

2.5% (0.03𝝓) 50% (0.67𝝓) 97.5% (2.24𝝓)

65 2 44 146

130 4 87 291

260 8 174 582



Prior on 𝜏

Half-Normal(𝝓) is often a reasonable 
choice of prior for the between-
subgroup heterogeneity 
(Rover et al (2021), Wang et al (2024), 
Spiegelhalter et al (2004))

Choosing value of 𝜙:
• 𝜏 ∼ 𝐻𝑁(𝜙) has median 0.67𝜙 and 

95% interval (0.03𝜙 – 2.24𝜙)
• Look at  induced prior on 

𝜇𝑗 − 𝜇𝑘

Induced prior on difference in subgroup effects for different 
choices of  scale parameter 𝝓 for  Half Normal(𝝓) prior on 𝝉
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choice of prior for the between-
subgroup heterogeneity 
(Rover et al (2021), Wang et al (2024), 
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Choosing value of 𝜙:
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Prior on 𝜏

Half-Normal(𝝓) is often a reasonable 
choice of prior for the between-
subgroup heterogeneity 
(Rover et al (2021), Wang et al (2024), 
Spiegelhalter et al (2004))

Choosing value of 𝜙:
• 𝜏 ∼ 𝐻𝑁(𝜙) has median 0.67𝜙 and 

95% interval (0.03𝜙 – 2.24𝜙)
• Look at  induced prior on 

𝜇𝑗 − 𝜇𝑘

• Elicit probability 𝑝 s.t. 
𝐏𝐫 𝝁𝒋 − 𝝁𝒌 < 𝜹 = 𝒑

e.g. Pr 𝜇𝑗 − 𝜇𝑘 < 100 𝑚𝑙 = 0.5

⇒ 𝜙 = 194

“small”

“reasonable”

“fairly high”

“fairly extreme”

“very extreme”

Induced prior on difference in subgroup effects for different 
choices of  scale parameter 𝝓 for  Half Normal(𝝓) prior on 𝝉



Reporting

Posterior of 𝜏

prior

posterior 
median

posterior 
95% CrI

Primary analysis using  𝜏 ~ 𝐻𝑎𝑙𝑓 𝑁𝑜𝑟𝑚𝑎𝑙(130)  prior
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Posterior of 𝜏

prior

posterior 
median

posterior 
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Sensitivity analysis using  𝜏 ~ 𝐻𝑎𝑙𝑓 𝑁𝑜𝑟𝑚𝑎𝑙(194)  prior
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Sensitivity analysis using  𝜏 ~ 𝐻𝑎𝑙𝑓 𝑁𝑜𝑟𝑚𝑎𝑙(65)  prior



Reporting

Posterior of 𝜏

prior

posterior 
median

posterior 
95% CrI

Sensitivity analysis using  𝜏 ~ 𝐻𝑎𝑙𝑓 𝑁𝑜𝑟𝑚𝑎𝑙(26)  prior



Reporting

𝜏 ~ HN(130) prior

Posterior predictive checks

Posterior predictive distribution for 
observed effect in each subgroup 

(median, 50% and 90% interval)

Actual effect observed 
in each subgroup



Reporting

𝜏 ~ HN(130) prior

Posterior predictive checks

𝜏 ~ HN(26) prior



Example 2: Bayesian Dynamic 
Borrowing in a Paediatric Lupus Trial



• Rare disease with a drug already approved in adults
• Planned paediatric study: randomized controlled clinical trial
• External data available: two replicate Phase 3 studies in adults
• Motivation for using external data: supplement the planned pediatric sample size with adult 

data to improve efficiency and increase precision of evidence for decision-making

Context of Use: Clinical & Statistical Contexts

Context
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• Rare disease with a drug already approved in adults
• Planned paediatric study: randomized controlled clinical trial
• External data available: two replicate Phase 3 studies in adults
• Motivation for using external data: supplement the planned pediatric sample size with adult 

data to improve efficiency and increase precision of evidence for decision-making

• Very low feasibility of recruiting pediatric patients
• High unmet medical need in the pediatric population
• Good biological and clinical rationale for transportability from adults to children

Clinical context

• High-quality data from adults 
• Similar trial design, strata, endpoints etc
• Subjective assumption of transportability from adults to children

Context of Use: Clinical & Statistical Contexts

Statistical context

Context



Paediatric 
study data

Adult study 
data (N=1125)

Paediatric Trial – Bayesian Dynamic Borrowing (BDB) Design

Treatment 
(N=50)

Placebo 
(N=50)

Primary endpoint: Disease activity responder index 

Treatment contrast: Odds Ratio for active v placebo 
(assumed Normally distributed on log scale)

Success: Pr(OR > 1 | data, prior) > 97.5%



Paediatric 
study data

Adult study 
data (N=1125)

Paediatric Trial – Bayesian Dynamic Borrowing (BDB) Design

Treatment 
(N=50)

Placebo 
(N=50)

Primary endpoint: Disease activity responder index 

Treatment contrast: Odds Ratio for active v placebo 
(assumed Normally distributed on log scale)

Success: Pr(OR > 1 | data, prior) > 97.5%

Robust mixture prior for paediatric log OR: 
weighted mixture of posterior distribution of 
treatment effect from adult study (weight w) 
and vague distribution (weight 1-w) 
centered on 0 with unit info variance



Elicitation of prior weight 
• Multiple experts in relevant disease area with clinical experience of treating 

adults and/or children  
• Review

• available data from the adult studies, PK etc
• comparability of study designs
• similarities between adults and children based on experience and relevant literature
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• Review

• available data from the adult studies, PK etc
• comparability of study designs
• similarities between adults and children based on experience and relevant literature

•  How much confidence do you have in applying the adult clinical trial data to 
make decisions on treatment effect in children?

Ignore adult 
data as 
irrelevant to 
paediatric 
population

Fully trust 
adult data as 
applicable to 
paediatric 
population

0 1 2 3 4 5 6 7 8 9 10



Elicitation of prior weight 
• Multiple experts in relevant disease area with clinical experience of treating 

adults and/or children  
• Review

• available data from the adult studies, PK etc
• comparability of study designs
• similarities between adults and children based on experience and relevant literature

•  How much confidence do you have in applying the adult clinical trial data to 
make decisions on treatment effect in children?

Ignore adult 
data as 
irrelevant to 
paediatric 
population

Fully trust 
adult data as 
applicable to 
paediatric 
population

0 1 2 3 4 5 6 7 8 9 10

Average score = 7

Prior weight on 
adult data = 0.7



Assessing (in)correctness of decisions
Metric Comments Paradigm

Pr(+ve Decision | Truth = null) Type 1 error Hypothetical probabilities of 
making future decisions given 
fixed truths

Frequentist

Pr(+ve Decision| Truth = MCID) Power Hypothetical probabilities of 
making future decisions given 
fixed truths

Frequentist

See Sections 1.3 and 9.3 of Frank Harrell’s online course https://hbiostat.org/bayes/bet

https://hbiostat.org/bayes/bet


Assessing (in)correctness of decisions
Metric Comments Paradigm

Pr(+ve Decision | Truth = null) Type 1 error Hypothetical probabilities of 
making future decisions given 
fixed truths

Frequentist

Pr(+ve Decision| Truth = MCID) Power Hypothetical probabilities of 
making future decisions given 
fixed truths

Frequentist

Pr(+ve Decision) Assurance Predicted probability of making 
a positive decision

Hybrid – requires 
design (sampling) 
prior for true effect

Pr(+ve Decision AND Truth = 
null)*

Joint probability that null 
is true and that a positive 
decision is made

Predicted probability of making 
a false positive decision

Hybrid - requires 
design (sampling) 
prior for true effect

*Best et al (2024) Beyond classical type I error: Bayesian metrics for Bayesian Designs using Informative Priors. J Biopharm Stats



Assessing (in)correctness of decisions
Metric Comments Paradigm

Pr(+ve Decision | Truth = null) Type 1 error Hypothetical probabilities of 
making future decisions given 
fixed truths

Frequentist

Pr(+ve Decision| Truth = MCID) Power Hypothetical probabilities of 
making future decisions given 
fixed truths

Frequentist

Pr(+ve Decision) Assurance Predicted probability of making a 
positive decision

Hybrid – requires 
design (sampling) 
prior for true effect

Pr(+ve Decision AND Truth = 
null)

Joint probability that null 
is true and that a positive 
decision is made

Predicted probability of making a 
false positive decision

Hybrid - requires 
design (sampling) 
prior for true effect

Pr(Truth = null | +ve Decision) Probability that a positive 
decision is incorrect 
(i.e. decision is a false 
positive)

Judgement of incorrectness of 
decision at time decision is 
made. Equals (1 – posterior prob 
of efficacy) if success rule is met

Bayesian

See Sections 1.3 and 9.3 of Frank Harrell’s online course https://hbiostat.org/bayes/bet

https://hbiostat.org/bayes/bet
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• Borrowing (+ve) information on the treatment effect 
inflates type 1 error
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Frequentist operating characteristics
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• Borrowing (+ve) information on the treatment effect 
inflates type 1 error

• Kopp-Schneider et al (2024): calibrate (frequentist) 
test without borrowing to type 1 error of borrowing 
design 
➢No power gains are possible

➢But still potential gains in other OC (next slide) Ad
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• Borrowing (+ve) information on the treatment effect 
inflates type 1 error

• Kopp-Schneider et al (2024): calibrate (frequentist) 
test without borrowing to type 1 error of borrowing 
design 
➢No power gains are possible

➢But still potential gains in other OC (next slide)

➢Assumes all possible values of parameter space 
are equally important

➢Power gains from borrowing possible if we are 
willing to consider some regions of the parameter 
space as more important than others

➢restrict (or weight) operating characteristics 
to that region

Ad
ul

t d
at

a 
O

R

N
ul

l O
R

2.5%

33%

77%

21%

Frequentist operating characteristics
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Frequentist operating characteristics

Precision

No borrowing design

MSE

No borrowing design

Bias

No borrowing design



Design (sampling) priors
2 types of prior

• Analysis prior (A): pre-specified analysis prior for treatment effect parameter

• Sampling prior (S): design (or simulation) prior

• Mechanism for generating data scenarios to evaluate operating characteristics of trial designs 

• If S ≠ A  → can be used to judge accuracy of decisions under a prior which is different from the analysis 
(i.e. sponsor’s) prior
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• If S ≠ A  → can be used to judge accuracy of decisions under a prior which is different from the analysis 
(i.e. sponsor’s) prior

• Choosing S
• If solid agreement between sponsors and regulators about the prior, then may be sufficient to choose S = A

• In general, consider various S ≠ A to assess how easy it is for accuracy of conclusions to be below acceptable level



Design (sampling) priors
2 types of prior

• Analysis prior (A): pre-specified analysis prior for treatment effect parameter

• Sampling prior (S): design (or simulation) prior

• Mechanism for generating data scenarios to evaluate operating characteristics of trial designs 

• If S ≠ A  → can be used to judge accuracy of decisions under a prior which is different from the analysis 
(i.e. sponsor’s) prior

• Choosing S
• If solid agreement between sponsors and regulators about the prior, then may be sufficient to choose S = A

• In general, consider various S ≠ A to assess how easy it is for accuracy of conclusions to be below acceptable level

• S often more sceptical than A – can be based on:

• Data, e.g. select least favourable previous trial, or shift mean downwards

• Expert elicitation

• “Reference sceptical prior” (Spiegelhalter at al 1994), e.g. mean 0, small prob of treatment effect > alternative 

• Note: S = point mass (at null or alternative) →  standard type 1 error and power calculations



Design priors for paediatric example

Adult prior fully relevant

S = A
Mean 0, Pr(OR>1.6) = 0.05

Pr(OR=1) = 0.3, Pr(OR>1.6) = 0.05



Design priors for paediatric example

Adult prior fully relevant

S = A
Mean 0, Pr(OR>1.6) = 0.05

Pr(OR=1) = 0.3, Pr(OR>1.6) = 0.05

✓ Upfront discussion and alignment between 
sponsor and regulator to agree what design 
scenarios are possible



Assessing (in)correctness of decisions: paed example



Metric Design prior Analysis prior
RMP Vague 

Type 1 error Point mass at 
OR=1

33% 2.5%

Power Point mass at 
OR=1.6

77% 21%

Prior probability of no treatment 
benefit: 
Pr(True OR ≤ 1)

Robust mixture

Sceptical 2

15%

30%

Predicted probability of positive 
results (assurance):
Pr(success) 

Robust mixture

Sceptical 2

67%

48%

27%

7%

Predicted probability of 
obtaining a false positive result:
Pr(True OR ≤ 1 AND success)

Robust mixture

Sceptical 2

5% 

10%

0.4%

0.8%

If positive result is observed, 
probability it is incorrect:t 
Pr(True OR≤ 1 | success)

Robust mixture

Sceptical 2

0.6%

29%

<0.1%

28%

Assessing (in)correctness of decisions: paed example



Metric Design prior Analysis prior
RMP Vague 

Type 1 error Point mass at 
OR=1

33% 2.5%

Power Point mass at 
OR=1.6

77% 21%

Prior probability of no treatment 
benefit: 
Pr(True OR ≤ 1)

Robust mixture

Sceptical 2

15%

30%

Predicted probability of positive 
results (assurance):
Pr(success) 

Robust mixture

Sceptical 2

67%

48%

27%

7%

Predicted probability of 
obtaining a false positive result:
Pr(True OR ≤ 1 AND success)

Robust mixture

Sceptical 2

5% 

10%

0.4%

0.8%

If positive result is observed, 
probability it is incorrect:t 
Pr(True OR≤ 1 | success)
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Sceptical 2
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<0.1%

28%
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Metric Design prior Analysis prior
RMP Vague 

Type 1 error Point mass at 
OR=1

33% 2.5%

Power Point mass at 
OR=1.6

77% 21%

Prior probability of no treatment 
benefit: 
Pr(True OR ≤ 1)

Robust mixture

Sceptical 2

15%

30%

Predicted probability of positive 
results (assurance):
Pr(success) 

Robust mixture

Sceptical 2

67%

48%

27%

7%

Predicted probability of 
obtaining a false positive result:
Pr(True OR ≤ 1 AND success)

Robust mixture

Sceptical 2

5% 

10%

0.4%

0.75%

If positive result is observed, 
probability it is incorrect:t 
Pr(True OR≤ 1 | success)

Robust mixture

Sceptical 2

0.6%

29%

<0.1%

28%

Assessing (in)correctness of decisions: paed example



“What if” 
value of  

observed OR 
in paediatric 

study

Prior predicted probability of 
value < observed  under 
different design priors

Proposed BDB design (𝒘 =70%)
Frequentist 

design

Posterior 
weight on 
evidence 

informed by 
adult data

Point estimate 
(posterior mean) 

of OR in 
paediatrics

[95% CrI]

Point estimate 
of OR in 

paediatrics

[95% CI]

RMP design 
prior

Sceptical 2 
design prior

0.60 0.13 0.06 0.51 0.96 [0.31, 1.81] 0.60 [0.27, 1.33]

1.00 0.24 0.37 0.89 1.48 [0.75, 1.96] 1.00 [0.48, 2.10]

1.19 0.32 0.53 0.92 1.54 [1.00, 2.00] 1.19 [0.54, 2.64]

1.40 0.42 0.67 0.94 1.58 [1.18, 2.05] 1.40 [0.68, 2.87]

1.60 0.51 0.77 0.94 1.61 [1.23, 2.10] 1.60 [0.79, 3.25]

1.80 0.59 0.84 0.94 1.64 [1.26, 2.17] 1.80 [0.89, 3.64]

52

Consistent with 
adult data

Prior-data 
conflict

Worse than in 
adult data

Observed 
paediatric 

OR: 

Better than in 
adult data

Minimum 
detectable 

effect

Design characteristics: Illustrative results under “what if” data scenarios
How likely are we to end up in different scenarios, and what would the impact be on 
decisions or inferences?



How much observed “drift” is acceptable?

• 𝑂𝑅𝑜𝑏𝑠 = observed OR in paediatric trial (N=100)
• 𝑂𝑅𝐵𝐷𝐵 = posterior mean OR from BDB analysis of 

paediatric trial (N=100 + robust mixture prior)
𝐷𝐼𝐹𝐹𝐵𝐷𝐵 = 𝑂𝑅𝑜𝑏𝑠 − 𝑂𝑅𝐵𝐷𝐵

absolute difference between BDB result and observed result in paeds

 

Acknowledgement: Matt Psioda



How much observed “drift” is acceptable?

• 𝑂𝑅𝑜𝑏𝑠 = observed OR in paediatric trial (N=100)
• 𝑂𝑅𝐵𝐷𝐵 = posterior mean OR from BDB analysis of 

paediatric trial (N=100 + robust mixture prior)
𝐷𝐼𝐹𝐹𝐵𝐷𝐵 = 𝑂𝑅𝑜𝑏𝑠 − 𝑂𝑅𝐵𝐷𝐵

absolute difference between BDB result and observed result in paeds

• 𝑂𝑅𝐹𝑈𝐿𝐿 = observed OR in fully powered trial (N=500) 
with true OR = 𝑂𝑅𝑜𝑏𝑠

𝐷𝐼𝐹𝐹𝐹𝑈𝐿𝐿 = 𝑂𝑅𝑜𝑏𝑠 − 𝑂𝑅𝐹𝑈𝐿𝐿

differences in OR we might observe due to sampling variation if we 
were to continue collecting data on sufficient children to have a fully 

powered trial, assuming true OR= 𝑂𝑅𝑜𝑏𝑠 (conservative) 

 
Acknowledgement: Matt Psioda



How much observed “drift” is acceptable?

• 𝑂𝑅𝑜𝑏𝑠 = observed OR in paediatric trial (N=100)
• 𝑂𝑅𝐵𝐷𝐵 = posterior mean OR from BDB analysis of 

paediatric trial (N=100 + robust mixture prior)
𝐷𝐼𝐹𝐹𝐵𝐷𝐵 = 𝑂𝑅𝑜𝑏𝑠 − 𝑂𝑅𝐵𝐷𝐵

absolute difference between BDB result and observed result in paeds

• 𝑂𝑅𝐹𝑈𝐿𝐿 = observed OR in fully powered trial (N=500) 
with true OR = 𝑂𝑅𝑜𝑏𝑠

𝐷𝐼𝐹𝐹𝐹𝑈𝐿𝐿 = 𝑂𝑅𝑜𝑏𝑠 − 𝑂𝑅𝐹𝑈𝐿𝐿

differences in OR we might observe due to sampling variation if we 
were to continue collecting data on sufficient children to have a fully 

powered trial, assuming true OR= 𝑂𝑅𝑜𝑏𝑠 (conservative) 

• Calculate 𝐏𝐫 𝑫𝑰𝑭𝑭𝑭𝑼𝑳𝑳 > 𝑫𝑰𝑭𝑭𝑩𝑫𝑩| 𝑶𝑹𝒐𝒃𝒔  for 
possible values of 𝑂𝑅𝑜𝑏𝑠 in paediatric trial
➢ High probabilities suggest observed drift 

(𝑫𝑰𝑭𝑭𝑩𝑫𝑩) may be reasonable

 

Acknowledgement: Matt Psioda

𝐷𝐼𝐹𝐹𝐹𝑈𝐿𝐿 likely to be larger than 
𝐷𝐼𝐹𝐹𝐵𝐷𝐵 for 𝑂𝑅𝑜𝑏𝑠 in this range 



Reporting  
Evidence source Odds Ratio (95% CrI)

Primary analysis - posterior 1.61 (1.21, 2.07)

Paediatric study only 1.50 (0.68, 3.29)

Adult prior only 1.62 (1.28, 2.05)

Robust adult prior only 1.60 (0.02, 52.6)
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Tipping point 

Range of prior weights for which the study 
conclusion (met primary success rule) is 

robust

Pre-specified prior 
weight for primary 

analysis

Sensitivity analysis: Tipping point 
analysis to varying prior weight 

Prior predictive distribution for 
observed OR

Primary analysis: Posterior summary



Always consider priors on interpretable scale

Prior or posterior predictions of observables are helpful 

Visualise the prior (static or dynamic) 

Some recommendations

Design (sampling) priors are useful to:
• guide choice of scenarios of interest/concern
• assess impact of realistic prior-data conflict on 

conclusions
Priors can be based on data, expert elicitation, or 
archetypal positions (e.g. sceptical, optimistic)

Report sensitivity analyses to reasonable alternative priors



Final reflections
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ChatGPT
Self-standing Evidence:  This refers to evidence that, on its own, is sufficient to establish a fact or prove a 
point. In other words, even if you removed all other evidence, this piece would still carry enough weight to 
support the conclusion.

Katrina and Florian 
presentation:
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ChatGPT
Self-standing Evidence:  This refers to evidence that, on its own, is sufficient to establish a fact or prove a 
point. In other words, even if you removed all other evidence, this piece would still carry enough weight to 
support the conclusion.
Compelling Evidence:  This term emphasizes how persuasive or convincing the evidence is. It suggests that 
the evidence is so strong that it leaves little room for doubt or counter-argument. Compelling evidence 
may combine multiple pieces or exhibit such clarity and reliability that it forces a decision in favor of one 
conclusion over another.

Katrina and Florian 
presentation:
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ChatGPT
Self-standing Evidence:  This refers to evidence that, on its own, is sufficient to establish a fact or prove a 
point. In other words, even if you removed all other evidence, this piece would still carry enough weight to 
support the conclusion.
Compelling Evidence:  This term emphasizes how persuasive or convincing the evidence is. It suggests that 
the evidence is so strong that it leaves little room for doubt or counter-argument. Compelling evidence 
may combine multiple pieces or exhibit such clarity and reliability that it forces a decision in favor of one 
conclusion over another.

Katrina and Florian 
presentation:

Is it time to shift the basis for approval to requiring compelling evidence?
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