
openstatsguide: Checklist for Good Statistical Software Packages

Developers Value Tests For Software Longevity

Alessandro Gasparini, Daniel Sabanés Bové, Nils Penard, Audrey Yeo Te-ying, on behalf of openstatsware

 Scope
We encourage developers of statistical software packages to follow
this minimum set of good practices around:

“Documentation, Vignettes, Tests, Functions, Style, Life cycle”

These keywords can be easily remembered with the mnemonic
bridge sentence:

“Developers Value Tests For Software Longevity”

While the recommendations are rather generic, we focus on func-
tional programming languages and give links to implementations in
R, Python and Julia.

This guide primarily addresses developers of statistical packages.
Users interested in assessing the quality of existing statistical pack-
ages will find complementary “validation”-focused resources on the
guide website.

 Documentation
… is important for both users and developers to understand all ob-
jects in your package, without reading and interpreting the under-
lying source code.

1. Use in-line comments to generate their corresponding docu-
mentation. {roxygen2}

2. Do also document internal functions and classes.
3. Add code comments for ambiguous or complex pieces of inter-

nal code.

 Vignettes
… provide a comprehensive and long-form overview of your pack-
age’s functionality from a user point of view.

1. Provide an introduction vignette that opens up the package to
new users.

2. Include deep-dive vignettes, including describing statistical
methodology.

3. Host your vignettes on a dedicated website. {pkgdown}

 Tests
… are a fundamental safety net and development tool to ensure that
your package works as expected, as you develop and use it.

1. Write unit tests for all functions/ classes in your package (“white
box” testing).

2. Write functional tests for your user API (“black box” testing).
{testthat}

3. In addition, ensure good coverage of your code with your tests
as a final check. {covr}

 Functions
… should be short, simple and enforce argument types with asser-
tions.

1. Write short functions for a single and well defined purpose, with
few arguments.

2. Use type hints declaring which arguments expect which type of
input. {roxytypes}

3. Enforce types and other expected properties of function argu-
ments with assertions. {checkmate}

 Style
… should be language idiomatic and enforced by style checks.

1. Use language idiomatic code and follow the “clean code” rules.
2. Use a formatting tool to automate code formatting. {styler}
3. Use a style checking tool to enforce a consistent and readable

code style. {lintr}

 Lifecycle
… management is crucial to build up your user base in a sustainable
way. Life cycle management is simplified by reducing dependen-
cies, and should comprise a central code repository.

1. Reduce dependencies to simplify maintenance of your own
package and depend on other packages that you trust and deem
stable enough.

2. Track dependencies and pin their versions to produce consis-
tent results and behaviours by using more system level that
serves as a source of truth for all packages developers.

3. Maintain the change log and deprecate functionality before
deleting it.

4. Use a central repository for version control and publication of a
contributing guide to enable community contributions.

References

1

Audrey Yeo

Audrey Yeo

Audrey Yeo

Audrey Yeo

Audrey Yeo

Audrey Yeo

Audrey Yeo


	Scope
	Documentation
	Vignettes
	Tests
	Functions
	Style
	Lifecycle
	References

